
Notes About Lab 4

If you read the lab directions carefully and draw pictures of your
structures as you code, most of Lab 4 is straightforward. The place
students tend to find confusing is in the interaction between calls to
iterator.next() and iterator.previous().

Clicker Question. Suppose list L contains exactly the data 1 2 3
What would you expect the following code to print?

ListIterator<Integer> iter = L.listIterator();
while (iter.hasNext())

System.out.print(iter.next());
while (iter.hasPrevious())

System.out.print(iter.previous());

A) 1 2 3 2 1
B) 1 2 3 3 2 1
C) 3 2 1 2 3
D) 3 2 1 1 2 3

If L is our list and it currently contains data 1,2,3 the code
ListIterator<Integer> iter = L.listIterator();
while (iter.hasNext())

System.out.print(iter.next());
while (iter.hasPrevious())

System.out.print(iter.previous());

will print
1 2 3 3 2 1

Note that the third call to next() and the first call to previous() both
return 3. In general a call to next() followed by a call to previous()
should have both calls returning data from the same node.

To arrange this, remember that we want to think of the current
marker of the iterator as pointing between two elements of the list:
the one just visited and the one to come next. We can't really achieve
that with a linked list because there is nothing between two nodes to
point at. We need to point either at the node to the left of this spot
or the node to the right. You can set up the code either way.

In the following pictures l will set the current pointer to the left of the
between spot.

1 2 3

head tail

Suppose current is pointing at the box with datum 2. We are saying
this is to the left of our logical position, so our actual location is
between box 2 and box 3. On a call to next we move to the right and
return 3. Here is code that achieves this:

current = current.next
return current.data

current

1 2 3

head tailcurrent

Our logical position is now between the 3-node and tail. A call to
previous() should move current to the left and return 3. What
code does this?

Node p = current;
current = current.previous;
return p.data;

current = current.previous;
return currrent.data;

return current.data;
current = current.previous

Node p = current.previous;
return p.data;
current = p;

A

B

C

D

1 2 3

head tailcurrent

Our logical position now is between the 3-node and the tail. A call
to previous() will move current to the left and return 3:

Node p = current;
current = current.previous;
return p.data;

So the call to next() and the call to previous() both return 3 and we
are back to our original picture:

1 2 3

head tailcurrent

1 2 3

head tailcurrent

Note that the codes for head() and previous() do the same steps in
different orders:

next():
current = current.next
return current.data

previous:
Node p = current;
current = current.previous;
return p.data;

If you choose to make current point at the node to the right of the
in-between location you will get slightly different code that is just as
reasonable. Either way you need to see how your pictures lead to
code for hasNext() and hasPrevious() as well as the iterator add()
and remove() methods.

